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The three-body formalism, using separable potentials in s and p states of nucleon pairs, is set up under 
the conditions of full antisymmetrization of the three-nucleon wave function. The formalism is applied to 
the problem of n-d scattering, where the effects of "polarization" are fully taken into account. The ampli­
tudes for quartet and doublet scattering are found to satisfy two- and four-coupled one-dimensional integral 
equations, respectively. The quartet scattering length is found to agree with the figure for the so-called 
experimental set I for this parameter. The doublet scattering length, on the other hand, is found to be 
much more sensitive to the details of the potentials, thus preventing a theoretical resolution of its ambiguity 
within the present formalism without tensor forces. 

I. INTRODUCTION 

SCATTERING of nucleons by deuterons has been 
used by many authors as a means of understanding 

two-body forces in greater detail than two-body 
scattering data can provide. For, as is generally 
believed, the validity of a two-body potential can be 
assessed only through a simultaneous study of scattering 
of two particles on and off the energy shell. A three-
particle system is the smallest unit whose physical 
parameters depend on the two-body "potential" in a 
more or less sensitive fashion. In a recent paper by one 
of us1 this idea was discussed in some detail in the 
context of a bound three-body problem—the triton. In 
the same way, the study of a three-body scattering 
state, e.g., an n-d system, provides a complementary 
tool for obtaining information on the validity of a 
given two-body potential. 

A major obstacle to translating these ideas into a 
practical program of calculations has always been the 
need to resort to various approximations (with effects 
of unknown magnitudes) in dealing with three-body 
systems. For example, a standard approximation used 
in the calculation of n-d scattering is the so-called 
"no-polarization" approximation, in which the distor­
tion of the deuteron structure due to the projectile is 
neglected. Mixed feelings have been expressed by 
various authors on this approximation,2 the common 
belief being that a proper antisymmetrization of the 
complete three-body wave function makes the error 
due to the "no-polarization" approximation much 
smaller than if such antisymmetrization is not carried 
out. No accurate estimate of this error has, however, 
been made with the conventional static potentials 

* Supported in part by the National Science Foundation. 
f On leave of absence from Delhi University, Delhi, India, 

during the year 1962-63. 
1 A. N. Mitra, Nucl. Phys. 32, 529 (1962); referred to as A. 
2 See, for example, H. S. W. Massey, in Proceedings of the Inter­

national Conference on Nuclear Forces and the Few-Nucleon 
Problem, London, 1959, edited by T. C. Griffith and E. A. Power 
(Pergamon Press Inc., New York, 1960), Vol. II , p. 345. 

(Yukawa, Gaussian, etc.) that have so far been used to 
calculate n-d scattering. 

Presumably as a result of this and other approxima­
tions, it has so far not been possible to resolve theoret­
ically the ambiguity between the two famous sets of 
scattering lengths, both of which seem to fit the 
experimental data on n-d scattering at low energies.2 

(I) a3/2=6.4±0.3F, ai /2=0.7±0.3 F; 

(II) a3/2=2.6=fc0.3F, a1/2=8.3±0.3 F. 

Thus, the calculations of Troesch and Verde,3 Gordon,4 

Delves and Brown,5 using various approximations 
(among them the no-polarization approximation) have 
all tended to favor set II. On the other hand, the 
calculations of Christian and Gammel6 and Haas and 
Robertson7 produced evidence in favor of set I. How­
ever, these last authors7 who worked with a Yukawa 
interaction, were also able to show that their results 
were so sensitive to approximations, that the neglect 
of the long-range tail of the kernel of their integrodif-
ferential equation could shift the values of the scattering 
lengths almost all the way to set II. 

Studies of the effect of distortion of the deuteron, 
using variational procedures, have also led to widely 
different conclusions by various authors. Thus, while 
Sartori and Rubinow,8 and Burke and Haas9 found 
negligible effects, Eflimov10 observed an effect as high 
as 50% for ai/2, and somewhat less for az/2.11 All these 
authors worked with Gaussian potentials. It is entirely 

3 A. Troesch and M. Verde, Helv. Phys. Acta 24, 39 (1951). 
4 M . M. Gordon, Phys. Rev. 80, 1111 (1950). 
5 L. M. Delves and D. Brown, Nucl. Phys. 11, 432 (1959). 
6 R. S. Christian and J. L. Gammel, Phys. Rev. 91, 100 (1953). 
7 F. A. Haas and H. H. Robertson, Proc. Phys. Soc. (London) 

A73, 160 (1959). 
8 L. Sartori and S. I. Rubinow, Phys. Rev. 112, 214 (1958). 
9 P. G. Burke and F. A. Haas, Proc. Roy. Soc. (London) A252, 

177 (1959). 
10 V. N. Efimov, Zh. Eksperim. i Teor. Fiz. 35, 137 (1958) 

[translation: Soviet Phys—JETP 8, 98 (1959)]. 
11 I t may be noted that for a3/2 the only effect of distortion can 

be felt through an interaction in a triplet odd state, particularly 
3p, which is believed to be much weaker than a triplet even force. 
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possible that a potential with a longer tail could produce 
further ambiguities, as the authors of Ref. 7 have found 
(see last paragraph). As a matter of fact, the range of 
the potential considered might conceivably play an 
important role in the understanding of all these conflict­
ing results. 

There is very little purely threoretical material 
available which might help to resolve these ambiguities 
on scattering lengths. Davidov and Filipov12 had 
suggested that since in the quartet state of n-d, the 
neutron cannot fall inside the deuteron (exclusion 
principle), the "effective potential" for the quartet n-d 
state should be (a repulsive) one of range larger than 
the deuteron radius of 4.3 F—an argument which allows 
only set I. A more formal method of analysis was given 
by Spruch and Rosenberg13 who were able to obtain 
rigorous upper bounds on the scattering lengths of 
neutrons by nuclei for a specified total angular momen­
tum / . A calculation on these lines by Sartori and 
Rubinow14 produced a result for #3/2 in accord with the 
one given in set I. However, since the theory of Ref. 13 
is valid only for cases where there are no bound states 
of the compound system, it does not apply to the 
doublet n-d state and, hence, cannot independently 
resolve the ambiguity in #1/2. 

Such ambiguities certainly illustrate the fact that 
three-body parameters are rather sensitive to approx­
imations, and that the interpretation of results is at 
least partly obscured by the effect of approximations 
made in the calculations. Since, however, the magnitude 
of the three-body problem with conventional potentials 
leaves little alternative to approximations, the other 
possibility is perhaps to look into the problem with 
simplified interactions which at least would not allow 
approximations to stand in the way of interpretation 
of the results. Such an approach, using the so-called 
separable potentials, was advocated by one of us1 in 
connection with the problem of H3, where it was shown 
that a three-body problem could be algebraically 
reduced in an exact fashion to an equivalent two-body 
problem, at which stage a simple numerical calculation 
would suffice. I t is, therefore, clear that a similar 
simplification would obtain for the problem of n-d 
scattering if such potentials are used, so that the effects 
of various approximations (mentioned in the last few 
paragraphs) can be tested against the exact solution 
that this alternative description can provide. 

The present investigation for n-d scattering is a direct 
continuation of the program for studying three-body 

12 A. S. Davidov and F. G. Fillippov, Zh. Eksperim. i Teor. 
Fiz. 31, 340 (1956) [translation: Soviet Phys.—JETP 4, 257 
(1957)]. 

13 L. Spruch and L. Rosenberg, in Proceedings of the International 
Conference on Nuclear Forces and the Few-Nucleon Problem, 
London, 1959, edited by T. C. Griffith and E. A. Power (Pergamon 
Press Inc., New York, 1960), Vol. II, p. 375. 

14 S. I. Rubinow and L. Sartori, see Ref. 13, in Proceedings of the 
International Conference on Nuclear Forces and the Few-Nucleon 
Problem, London, 1959, edited by T. C. Griffith and E. A. Power 
(Pergamon Press Inc., New York, 1960), Vol. II, p. 385. 

systems which was started with the case of bound 
states.1 I t may be noted that the n-d system is one in 
which both bound (H3) and scattering states are 
involved. The case of all three nucleons in scattering 
states (e.g., in photodisintegration of H3) represents a 
third possible three-body system which can, in principle, 
provide additional information on the consistency of 
two-body forces. However, this case will not be con­
sidered in this paper. 

The formulation of the problem of n-d scattering is 
made here with a complete antisymmetrization of the 
wave function, including the effect of isospin—an 
improvement over the treatment of Ref. 1 where 
isospin effects were neglected. The N—N interaction 
considered here is assumed to operate in s- and ^-states. 
The formalism with tensor forces becomes considerably 
involved when isospin effects are included, and as such 
will be the subject of a subsequent publication. 

In Sec. 2, the coupled Schrodinger equations for the 
spatial parts of the three-nucleon wave function for the 
two cases of 5 = f and S— \ are obtained through a 
generalization of Verde's15 treatment so as to include 
potentials of unequal ranges for the different N—N 
states. In Sec. 3, the explicit structures of the appro­
priate symmetry for these spatial wave functions are 
obtained through the use of the assumed separable 
interactions in s and p states. These structures are 
expressible in terms of certain single-variable functions 
(one for each variety of N—N interaction assumed), 
which represent the "two-body wave functions" char­
acteristic of the various channels through which the 
n-d scattering can take place. Numerical values of the 
quartet and doublet scattering lengths are presented in 
Sec. 4, along with a discussion of the ' 'polarization 
effects" due to the various channels. 

2. THREE-BODY FORMALISM WITH ARBITRARY 
POTENTIAL SHAPES 

In this section we shall obtain the coupled Schrodinger 
equations for the spatial components of the three-body 
wave function for the two cases of 5 = 1 and S= J, after 
eliminating their spin and isospin components, following 
the techniques of Verde's article15 referred to as B. The 
corresponding equations of B will, however, be general­
ized to include arbitrary shapes of the potentials in the 
odd and even states of triplet and singlet interactions, 
instead of taking equal shapes for all of them. As will 
turn out in Sec. 3, this generalization does not bring 
about any additional complication in the structure of 
the equivalent two-body equations of the type obtained 
in A, and as such leaves a wider scope for studying 
three-body systems with realistic separable potentials 
which fit two-body data, than might be possible with 
the limitation of equal shapes for the different poten­
tials. The notations of B for the various spin and isospin 

15 M. Verde, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 170; referred to as B. 
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functions will, however, be frequently used in this 
section. The complete two-body potential in s and p 
states, but without tensor or spin-orbit parts, is taken 
as (cf., B) 

M(v\V\V
f) 

= -^g(p)g(p')P«+Pr--\nf(P)Kp')P«--Pr+ 

-2>\**u(j>)ii(j>')w'P+P+. (2.1) 

The shapes of these potentials will be discussed in 
Sec. 4. The projection operators Pe,^ are as defined 
in B. 

For the three-nucleon system let the momenta of 
the particles be Pi, P2, P3, such that 

P i + P 2 + P 3 = 0 , (2.2) 

2 p < / = P r - P i , P,.+ P y = - P * , (2.3) 
and 

(P.P.I VIP/P/) = 33(P/c-P*')(P«I VI pa ' ) . (2.4) 

According to B, the wave function ^(Pi,P2,P3) has the 
following structures for the cases 5 = f and S— J 
respectively, of the n—d system. 

*m=m"-rnx\ (2.5) 
* i / 2 = * a * ' - ^ M - # Y ' - - * " £ ' , (2.6) 

where x, f, £ a r e the spin, isospin, and spin-isospin 
functions, respectively, of the three particles, with the 
symmetries indicated by their superscripts, in the 
notation of B.16 Now the "master" equation for ^ is 

D(m= - E MV(ijyifk(ij), (2.7) 
ijk 

where 
D(E) = UPi2+P22+P*2)-ME, (2.8) 

and the following operator notation is used for the 
right-hand side: 

vfe>*(<i)=y"(PiPii7[p/p/) 
X*(Pi',P/,Pk)dPi'<IP/. (2.9) 

^k is expressed here as a function of P* and Py alone, 
via (2.3). The next step is to substitute the forms 
(2.5) or (2.6) for SHr in (2.7) and eliminate the spin and 
isospin functions to obtain the coupled integral equa­
tions for the spatial functions in the two respective 
cases of S= f and S= J. To write the resulting equations 
in a compact form, the following notation is introduced. 

16 \ps and \pa are, respectively, the totally symmetric and totally 
antisymmetric spatial parts of the wave function; \p' and yp" are 
the spatial functions of the so-called "mixed symmetry" [2,1], 
4>' being antisymmetric with respect to the basis momenta P2 and 
P3, and \p" symmetric in them. The superscripts on the spin and 
isospin functions have identical significance (in the basis represen­
tation provided by particles 2 and 3). The spin-isospin functions £' 
and £" are expressible in terms of the pure spin and isospin func­
tions x and r as $' = 2-** W W ? ) and ^^-^(x'r '-x'r ') . 

Let the operator &z\{ij) be the first term of —MV(ij) 
defined by (2.1), so that 

(Vii\An\pi/)==\ng(pij)g(pi/), (2.10) 

with similar definitions for A13, An, and A33. Further, let 
the operators A*, A', and A" (for each of A31, Ai3, An> A33) 
be defined as follows: 

A*=A(12)+A(31)+A(23), 

A , = |31 /2(A(12)-A(31)), (2.11) 

A " = - A ( 2 3 ) + K A ( 1 2 ) + A ( 3 1 ) ) . 

The effect of A8 on a particular spatial wave function yp 
will be understood to mean the following: 

AV=A(23Vi(23)+A(31)^2(31)+A(12Vi(12), (2.12) 

where each term of (2.12) is interpreted in the sense of 
Eq. (2.9). Similar definitions hold for Aty and A'ty. 
Using these notations, elimination of the spin and 
isospin components from both sides of Eq. (2.7) leads 
finally to the following coupled equations for the two 
cases of 5 = f and S— J, respectively. 

(a) S=f 
Z>(£)*'=i(A.i '+A„W+J(Aii '-A,, ')* , / 

+KA S 1 "-A 3 3 ")^ , (2.13a) 

Z)(£)^"=KA3i8+A33
8)^"+KA3i'-A33')l/'' 

- i ( A n " - A M ' W ; (2.13b) 

(b) S = l 

Z)(^«=i(AiiM-A,sWa+i(AiiV"-Aii'tyO 

- K A s . V - A , , " * ' ) , (2.14) 

Z)(£)^«=KA3is+Ai3
sVs+i(A3iy+A31"^") 

- i ( A i , y + A „ ' y o ; (2.i5) 

I>(£W''=i(An'-Ai,')^+l(AM"-Au"¥0 

+l(Aii,+A18'+An'+A„0*/ 

+l(Ati"+A1 ,"-A11"-A„'V 
+l(Aii'+Ai,'-Au'-A„ V , (2.16a) 

Z ? ( £ ) f " = i ( A 3 i " - A 1 3 " ) ^ 8 + K A u ' - A 3 3 ' ) ^ 
+i(A 3 i 8+A 1 3

s+A u '+A 33 s) 'A" 
+ i ( A « ' + A i , / - A i i ' - A M ' V 

- J ( A , i " + A „ " - A n " - A , , " ) * " . (2.16b) 

These forms bring out explicitly the permutation 
symmetry structures of the various spatial wave 
functions that are involved in each of the quartet and 
doublet cases, and represent the appropriate generaliza­
tions of Eqs. (2.7) and (2.8) of B for the case of unequal 
potential shapes. From these equations it is now 
possible to read off the algebraic structures of the 
various i/<'s by using the contents of Eqs. (2.9)-(2.12), 
so as to maintain the correct symmetries implied by 
their notations. This reduction is carried out in Sec. 3 
separately for the two cases of 5 = f and S=%. 
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3. REDUCTION TO EQUIVALENT TWO-BODY 
EQUATIONS 

We discuss first the case of 6*=f. From Eqs. (2.13) 
it is easy to deduce that the following functional forms 
of \pf and \p" are the only ones compatible with their 
correct symmetry, as well as the interaction (2.1). 

D(EW 

"• + ^ l / ( # 2 8 ) ( P 2 8 - P l ) ^ ( / , l ) - i ^ ( « ( # 1 2 ) P l 2 - P 8 f f ( P 8 ) 

+ ^(^3l)p31-P25r(P2)), (3.1) 
Pirn* 

= -g(p2z)G(Pi)+Hg(pi2)G(Pz)+g(Pzi)G(P2)) 

, + f (^ (^12 )P l2 -P3^ (P3) -^ (^3 l )p31-P 2 i y ( i > 2) ) . (3.2) 

We have introduced only two scalar functions G and H, 
one for each type of interaction allowed for the £ = § 
state, viz., A3i and A33. Substituting these forms back 
into Eqs. (2.13), the functions G and H are found to be 
given self consistently by the following equations: 

G(Pi) = 1 / dp^', g(P»W(23'), (3.3) 

p s , -PiH(Pi)='^X»» M P M ' « ( ? M ' ) P M - P J 8 W ( 2 3 ' ) , (3.4) 

where \[/i'(23') and ̂ i"(23') are the forms of (3.1) and 
(3.2) when Pi is eliminated by the use of Eq. (2.2), and 
the arguments (23') are abbreviations for the momenta 
P2 ' , P3 ' . Substitution of Eqs. (3.1) and (3.2) in (3.3) and 
(3.4) leads finally to the equations 

rdqg(q+i?)g(P+iq)^(?,q)G(q) 

3/rfqg(q+4P)q-(P+iq) 
* / 

XM(P+k)^1(P,q)H(g), (3.5) 
(Xzr'-h.iP^PHiP) 

= -3JdqrrK?,q)u(q+mfi-(d+^)s(P+H)G(q) 

+3fdq^(P,q)u(<l+W- (q+iP) 

Xq-(V+H)u(V+iq)qH(q), (3.6) 
where 

hn(P) = jdqf{q) (^+q2-EM)-\ (3.7) 

h„(P) = f dqu>(q)q*(iP*+q*-EM)-\ (3.8) 

and 
D(P,q) = P2+q2+¥-q-EM. (3.9) 

Equations (3.5) and (3.6) admit of a simple interpreta­
tion. G(P) describes the wave function of the neutron 
with respect to the actual deuteron state, viz., (np) 3Si. 
On the other hand, H(P) represents the polarization 
effect due to the 3P interaction, viz., the wave function 
of the proton with respect to the (2n) 3P state (as a 
result of the replacement of the proton in H2 by the 
incident neutron). The exchange of the target neutron 
by the incident one is, of course, automatically taken 
care of by the function G(P), due to total antisym-
metrization of the wave function. Neglect of H{P) 
would, therefore, amount merely to a neglect of the 
virtual effect of the channel p-\- (2n) 3P on n-\-d scatter­
ing. We note in this connection that the triplet odd 
potential is generally believed to be much weaker than 
the others,17-19 and further, that for a calculation of 
the (zero-energy) scattering length from Eqs. (3.5) and 
(3.6), the centrifugal barrier (/= 1) is expected to reduce 
the virtual effect of p+(2n) *P on n+d scattering 
considerably. With this understanding we shall ignore 
this particular polarization effect by setting H=0 in 
Eq. (3.5), for purposes of numerical calculations to be 
discussed in Sec. 4. 

The case of S= \ is more involved than S—\^ in 
that all the four interactions A31, A13, An, and A33 appear 
in it. By analogy with 5 = f , we now expect four 
independent functions to appear in the coupled integral 
equations, but in view of what has been said above for 
A33, we may drop this term from the beginning. We do 
not, however, take this liberty with An, since this 
force, which is much less understood, may or may not 
be small. We, therefore, work only with the interactions 
A31, A13, and An, and obtain the following structures for 
the various x/z's through Eqs. (2.15) and (2.16). 

D(E)r=H v(Pij)VirfkHa(Pk), (3.10) 
ij'k 

D(E)r=i:(g^n)G.(Pk)-f(p{j)F.(Pll)), (3.11) 

ijk 

D(E)r=i^(g(pn)G(P3)-g(p13)G(Pi)) 

+ (g-» / , G-> F ) + ^ ( p s , ) p M . P i H ( P i ) 

-i^(v(pli)p12-¥zH(P3) 

+v(p,i)v,l-PiH(Pi)), (3.12) 

D(E)r--g(pn)G(Pi)+Hi(pi2)G(Pi)+g(p31)G(P2)) 

+ ( « - » / ; G - • F ) + f (t>(#»)p«- P3H(P8) 
-v(p31)Vn-¥2H(Pz)). (3.13) 

The symbols <,g-+f,G->F) in Eqs. (3.12) and (3.13) 
signify the presence of additional terms of identical 

17 This is true, e.g., of the Gammel-Thaler potential (Ref. 18). 
and the same was found to be the case by Mitra and Naqvi (Ref. 
19), using separable potentials in the T= 1 state. 

18 J. Gammel and R. Thaler, Phys. Rev. 107, 291 (1957). 
" A . N. Mitra and J. H. Naqvi, Nucl. Phys. 25, 307 (1961). 
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structure, with the replacements indicated. We have 
here introduced two sets of functions Gs, Fs, Ha and 
G, F, H.20 However, we expect these two sets to be 
related, in so far as the permutation symmetries of all 
the four ^'s are coupled in an essential manner. Indeed, 
by substituting Eqs. (3.10)-(3.13) back into Eqs. 
(2.14)-(2.16), and proceeding as before, we find in the 
same notation as in Eqs. (3.3) and (3.4), 

G s(Pi)^G(Px) 

= iX3 i^P23 , g(^30(^ i s (230-^ i , , (230) , (3.14) 

F.(Pi) = /7(Pi) 

= -iXi3J^P237(^30(^is(23/)+^i,,(230), 

p2 3-P1 i7a(P1)^v5p2 3 .P1fl r(Pi) (3.15) 

= f X n J Jp23^(^3 ,)P23-P23 ,(^i ,(230+^(230). 

(3.16) 

Thus, as expected, there are only three independent 
functions (using the interactions A3i, Ai3, and An), 
giving strong support to the conjecture that there is 

with 
? = q + i P , * 7 = P + k - (3.24) 

The functions Gi, G2, G3 are, respectively, the "wave 
functions" for the channels n+(np) 35i, p+(2n) ^ o , 
and n-\- (np) 1Pi, showing explicitly how the effects of 
"polarization'' are incorporated in our formalism. 

Finally, we have to solve Eqs. (3.5) and (3.22) for 
the quartet and doublet scattering lengths at zero 
energy, respectively, using the boundary conditions 
represented by the process of n-d scattering through the 
various channels involved, according to the above 
interpretations for the functions G«. For -S=f, we set in 
Eq. (3.5) with # = 0 , 

G ( P ) = (27r)353(P-k)-47ra3/2(P) ( j p * - # - < € ) - i , (3.25) 

where 

ME=%K2-a2, ( a 2 /M= 2.226 MeV), (3.26) 

so that a3/2(0) is the exact quartet scattering length. 

20 The same functional notation for the two cases of 5 = f, J 
need not cause confusion, since these cases do not overlap at any 
stage, 

just one single-variable function for each variety of 
interaction that appears in the complete separable 
potential. Moreover, the assumption of different shapes 
for the different varieties of interaction leaves the basic 
structure of just as simple or as complicated, as the 
assumption of equal shapes would give. To obtain the 
coupled integral equations for G, F, H in a compact 
form, we introduce the following alternative notations: 

G(P),F(P),PH(P)={Ga(P)}y a = l , 2 , 3 ; (3.17) 

X31, X13, Xn= {X«} , a= 1, 2 , 3 ; (3.18) 

hn(P),hn(P),hn(P)={ha(P)}, a = l , 2 , 3 , (3.19) 

where 

hn(P)= fdqP(q)$P2+q2-ME)-\ (3.20) 

* i i (P)= / d({v2(q)q2(%P2+q2-ME)-K (3.21) 

Using these notations, the coupled integral equations are 

= E fdqD-WtiKaeCP^Gtiq), (3.22) 

where {ifa^(P,q)} is the matrix 

(3.23) 

Similarly, in Eq. (3.22) for S= 5 we set 

Ga(P)= ( 2 x M P - k ) 5 a l - 4 x a a ( P ) 

X C P - ^ - i e ) - 1 , (3.27) 

where 5ai is a Kronecker delta, and ai(0) represents the 
exact doublet scattering length. Substituting the forms 
(3.25) and (3.27) in (3.5) and (3.22), respectively, the 
following equations are finally obtained: 

4*-fc31(P)a3/20P) 

= (2irMiP)g(P) (P>+cfi)rl-4*[dq!r*D-l<r,q) 

X g ( q + i P ) g ( P + * q ) a V i ( ? ) ; (3.28) 

4wka(P)aa(P) 

= -(2x)3
JfiTa l(P,0)(P2+a2)-1 

+ £ 4r Jdq^-i(P,q)*a/l(P,q)a,(9); (3.29) 

where 

ka(P)= [ X , - 1 - M P ) ] ^ - * ' ) - 1 , (3-30) 

|-i/tt)*G») i/tt)/(i>) -Mto'nvh) 
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TABLE I. Calculated IP phase shifts (in deg) 
YLAM data of Hull et al. 

Energy 
(MeV) 

Calc. 
YLAM 

10 

- 1 . 5 
- 2 . 5 

20 

- 3 . 8 
- 5 . 0 

30 

- 6 . 1 
- 7 . 3 

40 

- 8 . 4 
- 9 . 1 

50 

-10.5 
-10 .6 

80 

-16 .4 
-14 .1 

100 

-19 .8 
- 1 5 

and the notations implied by Eqs. (3.18) and (3.19) 
are understood here. 

4. NUMERICAL RESULTS AND DISCUSSION 

We are now in a position to discuss the numerical 
solutions of Eqs. (3.28) and (3.29) for the two scattering 
lengths. For this the potential shapes are taken as 
follows: 

g(p),f(p),v(p)=W+pT1; (*= 1, 2,3). (4.1) 

g(p) and f(p) become the Yamaguchi potential21 for 
the 35i and x5o states by taking 

0 i = 6.255a, X3i= 33.44a3; (4.2) 

02= 6.255a, Xi3= 23.37a3. (4.3) 

A second set of values considered in this section for 
the evaluation of #3/2 is one due to Naqvi,22 viz., 

0 i = 5.8a, X3i= 23.2a3. (4.4) 

This is only a part of the total T = 0 interaction—the 
contribution from the s state of the 2N system. As for 
the function v(p) for the lP potential, the following 
parameters were found to fit Hull et al.'s YLAM data23 

rather well up to 100 MeV, as Table I shows. 

03= 6.255a, Xn= 5.067a. (4.5) 

Since a positive Xn greater than 03/7T2 in the above 
model indicates a 1Pi bound state which is clearly 
unphysical, a second fit was also obtained for 

0 3 = 6.255a, Xn= - 5 0 . 6 a , (4.6) 

but the latter value of Xn was not very sensitive to the 
data. However, as we shall see below, the effect of either 
of these two sets on #1/2 was extremely small, and we 
shall not discuss this (academic) question of a repulsive 
or attractive 1P interaction any further in the present 
context. We would like to repeat, however, that either 

TABLE II. Calculated values of #3/2 in 10~13 cm. 

Case 

#8/2 

I 

5.91 

II 

5.3 

III 

6.32 

IV 

5.7 

21 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 
22 J. H. Naqvi, Nucl. Phys. 36, 578 (1962). 
23 N. H. Hull, K. E. Lassila, H. M. Ruppel, F. A. McDonald, 

and G. Breit, Phys. Rev. 122, 1606 (1961). 

of the sets (4.5) or (4.6) for Xn indicate that the lP\ 
interaction is appreciably stronger than the 3P interac­
tion15-16 and, hence, a fortiori, this fact gave us added 
confidence in our neglect of the ZP interaction on the 
integral equations for #3/2(P) and a,uz(P). 

Calculation of #3/2 from Eq. (3.28) was carried out 
exactly, as well as under the approximation described 
in Sec. 4 of A, using by turn the interactions (4.2) and 
(4.4). The results are shown in Table I I , where columns 
I and I I represent, respectively, the exact and approxi­
mate values using (4.2), and columns I I I and IV the 
corresponding values using (4.4). 

These values indicate, first, that the approximation 
considered in A is rather good for zero energy scattering, 
though it gives a somewhat smaller figure (by about 
10%). Secondly, a comparison of columns I and I I I 
shows that the triplet s-state part, like (4.4), of a T—0 
potential which also includes a tensor force, gives a 
somewhat higher figure, viz, 6.32 F, for #3/2 than an 
effective central s-state interaction like (4.2), which 
gives 5.91 F. The increase in the quartet scattering 
length by a "more realistic" two-body interaction like 
(4.4) is certainly welcome in the present context in so 
far as it tends to bring its value substantially closer to 
the experimental value of 6.4 F (corresponding to Set I ) . 
While such a small difference like 6-7% should not, 
offhand, warrant the physical conclusion that a T=0 
force with a tensor part gives a better representation of 
the quartet scattering length, than an effective T=0 
s-state force, we would like to believe the effect to be 
qualitatively significant for the following reason. Apart 
from the effect of P waves (which we shall see from the 
case of #1/2 to be negligible), the only other effect that 
could possibly influence the value of a3/2 is that due to 
the actual tensor part of the T==0 force, which is 
responsible for S—D interference in n-d scattering, and 
which has so far not been considered in our analysis. 
Now the kernel of Eq. (3.28) is seen to be repulsive, 
as already conjectured in Ref. 12. Therefore, the effect 
of the (hitherto neglected) tensor force would be to 
produce merely continuum D waves for the n-d system 
and not bound D waves, so that at zero energy the 
centrifugal barrier is expected to be very effective in 
preventing these D waves from affecting 5-wave n-d 
scattering.24 Under such conditions, it is very hard to 
visualize how the tensor force by itself could completely 
neutralize a 6-7% increase in the value of #3/2, due to 
the potential (4.4), compared with (4.2),25 though a 
more quantitative estimate is certainly in order. In any 
event, our result seems strongly to indicate a value of 
a3/2 quite consistent with set I, in agreement with the 
findings of Ref. 14, which also support the theory of 
Spruch and Rosenberg.13 

24 Such a conclusion would be unwarranted for an attractive 
n-d kernel, in which case the effect of the (almost) bound D waves 
could be quite important. One of the authors (ANM) is indebted 
to Professor N. Austern for bringing this point to his attention. 

26 Our subsequent analysis of a112 shows that continuum P waves 
have negligible (^0.3%) effect on s-wave scattering. 
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TABLE III. Calculated values of am in 10~13 cm. 

Case 

#1/2 

I 

9.25 

II 

11.74 

III 

11.69 

IV 

11.77 

V 

25.5 

The case of ay2 is much more complicated because of 
several effects, and hence, seems to be much less clear. 
The calculation of this parameter was carried out, using 
the potentials (4.2), (4.3), and (4.5) and/or (4.6). The 
results are shown in Table I I I , where column I rep­
resents the exact value using only the potentials (4.2) 
and (4.3), and column I I the corresponding value under 
the approximation of Sec. 4 of A. Columns I I I and IV 
represent the values of ay 2 under the approximation of 
A, when the potentials (4.5) or (4.6), respectively, are 
added to (4.2) and (4.3). Table I I I shows, once again, 
that the approximation of A is quite good for zero-
energy scattering. Further, the effect of "polarization" 
due to the channel n-\-(np) 1Ph on the S= J n+d 
scattering is very small, under the assumption of both 
attractive and repulsive interactions in the lP\ state of 
(np). Unfortunately, these values are nowhere near the 
corresponding set I value of ai/22; rather, the figure in 
column I is not far from the set I P value of this parame­
ter! The "polarization effect" of the p+ (2n) XSQ channel 
was estimated as follows. Taking the first of Eq. (3.29) 
and setting G2=0 (in addition to G3), the equation for 
Gi was solved with the potential (4.2), and a value of 
25.5 F for ay 2 was obtained, as shown in Column V of 
Table I I I . This shows that the polarization effect no 
doubt works in the right direction, but it is hard to 
make a precise estimate (percentage-wise) of its 
importance in the present context, since the quantities 
involved are still very large ( ~ 10 F) and of course far 
removed from the region of 1 F which is the expected 
order of magnitude for ay2 on the basis of the exper­
imental set I value. I t is possible, of course, that the 
ranges of the assumed singlet and triplet forces can 

play a much more important role7 for ay2 than for a3/2. 
A more important possibility lies in the recognition of 
the role of the tensor force for ai/2, for the following 
reason. The large values of ay 2 in Table I I I indicate 
very little net attraction and therefore a "just bound 
state," compared with the actual H3. To bring down this 
parameter from such large values would, therefore, 
need additional attraction, most likely to be provided 
by the hitherto neglected tensor force in producing 
(almost) bound D waves for the n-d system. I t may be 
noted that unlike the previous case of #3/2 the bound 
n-d D waves in the present case can significantly affect 
.S-wave n-d scattering in the doublet state. I t is, of 
course, not clear off-hand as to what extent the inclusion 
of the tensor force can bring down the value of ay2 
by providing additional attraction in the 5 wave of 
the n-d system. The formulation of the tensor force 
using full antisymmetrization in the present scope of 
the three-body investigation is still under way, and the 
questions as to the (1) role of the tensor force and (2) 
effect of the range of the N—N interaction, on the 
doublet scattering length, are expected to be answered 
more specifically in due course. 

A mechanism for detecting the di-neutron through 
a threshold effect in n-d scattering was suggested 
recently.26 If the di-neutron exists, then it has been 
suggested that a detection of this threshold effect can 
have a bearing on the ambiguity in the doublet scatter­
ing length.27 However, since such a threshold effect is 
expected to be small and has so far not been detected 
experimentally, we prefer not to discuss this question 
any further in this paper. 
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